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Abstract. The Lagrange multiplier method is applied to the description of a spin-2 field. The 
method bypasses the problem of constraint breakdown and inconsistency of quantisation in 
the presence of interactions and the theory is shown to remain causal when coupled to an 
external electromagnetic field. Canonical quantisation of the field is carried out and a 
covariant propagator obtained. The massless limit of the theory is also discussed. 

1. Introduction 

The question of anomalies in interacting higher-spin field theories and possible ways of 
resolving them has attracted considerable attention in recent times. Higher spin theory, 
from its very inception, has been haunted by troubles of one sort or another. The initial 
difficulty of algebraic inconsistencies which was noted soon after the formulation of 
higher-spin wave equations nearly four decades ago was, however, overcome without 
too much effort by means of a Lagrangian formulation by Pauli and Fierz (1939). But 
the surprising discovery made by Johnson and Sudarshan (1961) that it is impossible to 
quantise consistently a spin-; field coupled to an external electromagnetic field 
rekindled interest in the maladies inherent in higher-spin field theories. Vel0 and 
Zwanziger (1969a, b) subsequently demonstrated that troubles are present at the 
classical level itself and that, considered as classical wave equations, the equations of 
interacting higher-spin fields admit solutions that either do not propagate or propagate 
at a speed exceeding that of light. Extensive investigations by a number of workers, 
following the pioneering work of Vel0 and Zwanziger, have brought to light a variety of 
abnormalities afflicting higher-spin field theory at the classical as well as at the 
quantised level. Breakdown of constraint relations (Velo and Zwanziger 1969b, Hagen 
1971, Nath et a1 1971, Jenkins 1974), onset of Lorentz non-covariance (Jenkins 
1971a,b, Babu Joseph and Sabir 1976, Mathews et a1 1976), appearance of imaginary 
energy eigenvalues (Goldman and Tsai 1971a, b, Tsai and Yildiz 1971, Seetharaman et 
a1 1975, Mathews et a1 1976) and instability in the sense of Wightman (1968,1976) are, 
apart from causality violation, forms of pathologies from which higher spin theories 
suffer. 

While over the years more and more maladies have been exposed, and examples of 
ailing theories have multiplied, there is as yet no definite understanding as to the failure 
of field theory to give a consistent account of higher spin particles and their interactions. 
These range from minor modifications of the Lagrangians to alternate formulations 
without subsidiary conditions and the inclusion of gravitation and supersymmetry. The 
interest in the Bhabha first-order equations (Bhabha 1945, 1949) has been revived in 
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this context. Though they remain causal when interactions are introduced, the quan- 
tisation of Bhabha fields needs an indefinite metric and there is no known way to 
eliminate the negative norm states from the theory (Krajcik and Nieto 1974, 1975a, b, 
1976a, b, 1977a, b). On the other hand the Hurley equations (Hurley 1971, 1972, 
1974), which also preserve causality, founder on the floor of instability and the physical 
interpretation of the theory fails. The Bhabha-Gupta (Bhabha 1952, Gupta 1954) 
equation and the Fisk-Tait (Fisk and Tait 1973) equation provide two examples of 
theories which have constraint conditions but are free of acausality. Prabhakaran et a2 
(1975a, b, 1977) have shown that in both of these theories the total charge is indefinite. 
It appears that, within the conventional framework, only a multi-mass, multi-spin 
formulation with an indefinite metric can avoid troubles like causality violation. While 
the entirely novel approach of supersymmetric theories has had some success in yielding 
a consistent theory for a spin-; field (Deser and Zumino 1976, Freedman 1977, 
Freedman and Van Nieuwenhuizen 1976, Ferrara and Van Nieuwenhuizen 1976), 
many problems remain to be settled and it is not immediately obvious why supersym- 
metry, if needed at all, is essential only for higher spin fields and not for spin-0 or spin-$ 
fields which may be formulated without invoking it. 

Recently we have suggested a new approach to pathology-free higher-spin field 
theory by introducing a Lagrange multiplier formalism (Babu Joseph and Sabir 1977). 
In the Lagrangian formulation, as laid down by Pauli and Fierz (1939), the subsidiary 
conditions required for the elimination of redundant components are derived along 
with the equations of motion by the variation of a Lagrangian. Introduction of 
interactions, as a rule, modifies these constraint relations and this, it may be said, is 
responsible in several instances for the ensuing anomalies. It was suggested by us that if 
the existence of constraint conditions is taken into account from the very outset and if 
these conditions are kept separate from the equations of motion by means of a Lagrange 
multiplier, many of the usual pathologies of higher spin theories may be overcome. The 
method was developed with the example of a spin-5 field, and the absence of acausality 
and imaginary energy eigenvalues for electromagnetic interaction was demonstrated. 
Quantisation was carried out in an indefinite metric space and for minimal coupling a 
unitary S- matrix was constructed by introducing a fictitious particle and an additional 
vertex. 

In the present work the Lagrange multiplier formalism is extended to the 
description of a spin-2 field. Just as in the spin-? case, additional ghost particles 
are present besides the spin-2 particle and the field is quantised canonically with 
an indefinite metric. This method bypasses the problems of constraint breakdown 
and inconsistency in quantisation in the presence of interactions and the theory is 
shown to remain causal when coupled to an external electromagnetic field. 
Pathologies apart, another noteworthy feature of the present approach is that 
it allows a natural discussion of the massless case of the theory by taking the 
limit m+0. A discussion is given of the physically interesting case of the 
massless limit and the true propagator is derived. 

Section 2 sets forth the basic formulation of the Lagrange multiplier method as 
applied to a spin-2 field. Canonical quantisation of the field is carried out in 0 3 where 
the consistency of the procedure is also demonstrated and the propagators are obtained. 
Minimal coupling is considered in § 4 and it is shown that field propagation remains 
causal in the presence of an external electromagnetic field. Section 5 contains a 
discussion of the massless limit and § 6 sums up the main results. 
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2. Formulation 

An irreducible spin-2 field of mass m is described by the set of equations 

(O-m2)*,,=o (1) 

a,*,, = 0 (2) 

*,, = 0 (3) 
where is a symmetric tensor of rank two. A general Lagrangian density z0 given by 

zo = -aA*LuaArL,, - m2*Lu$,u +aA*Lua,*Au +a,*ZLuah~Au 
+A@,*;, a,+ +a,*+a,*,,) +Bads,*+ m2C*t$, (4) 

where +b = $,, and A, B, C are arbitrary parameters, will yield the equations (1)-(3) 
where A, B, C are restricted by the conditions 

( 5 )  A =.1 B = 2  2A 2 +A+$,  C = 3 A 2 + A + 1 .  
2, 

This is the formulation as given by Nath (1965), and under the stipulated conditions the 
Lagrangian (4) is equivalent to the Fierz-Pauli Lagrangian for the spin-2 field. In the 
presence of minimal electromagnetic coupling the Nath and Fierz-Pauli formulations 
suffer from acausality of propagation and inconsistency of quantisation. 

In the Lagrange multiplier method we take z0 as the Lagrangian to start with. It is 
now assumed that a constraint condition of the form (2) holds between the components 
of +,,, and this is incorporated into the Lagrangian by means of a multiplier field x, ( x )  
which for reasons of relativistic covariance must be a four-vector. We take 

2 = yo + xta,*,, + X,a,~L, . (6)  

Here it may be noted that only one of the set of constraint relations (2) and (3) has been 
taken into account; a discussion of the formalism with both sets of constraints is given in 
appendix 1. 

Variation of (LLy in the Lagrangian (6) yields the equation of motion 

(0- mz)hu - ( ~ A ~ , @ A U  + a ~ a d h , )  -Aa,ad 

- - ~ , ( A a ~ a ~ + ~ ~  + B O I C I ) + S , ~ ~ ~ W  =%a,xy +a,x,> (7) 

(O-m2>$,y - A a , a U ~ - s , ~ J 3 C I ~ + + , , m 2 C ~  =~(a,xu+avx,J. (8) 

( l - A - 4 B ) 0 4 + ( 4 C - l ) m 2 $  =a,x,. (9) 

and the variation of xk reproduces the constraint (2). Making use of equation (2) in 
equation (7), it follows that 

Putting p = v and summing over p in the above equation, we have 

Taking the divergence of equation (8) there results, when account is taken of condition 
( a ,  

-(A + B)Oa,g + Cm2a,$ = $(Ox, + a,a,x,). (10) 
Combining equations (9) and (lo), we arrive at the relation 

Oxy = (2B -A -- l)O&,t,b - (2C - l)m2a,+. (11) 
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In contrast to the situation we encountered in the spin-? case where the constraint 
relation for the spin-: field was purely algebraic, it appears that in the present case, 
because of the derivative nature of the constraint, the multiplier field x, cannot be 
expressed locally in terms of the components of 4,". However, the multiplier field can 
be eliminated from equation (8) by operating with 0 on either side of the equation and 
making use of equation (1 1). 
0(0-m2)$,,  +(1-2B)Oa,aV4 -S,d3((o)2$ 

If it is now assumed that B = C # f ,  it is immediately seen from equation (12) that 
+ ~ , , ~ m ~ 0 4 + + 2 ~ - l ) m ~ a , a , *  =o. (12) 

END - m2)4 = 0 

(o)~(o - m2)4,,, = 0. 

and as a consequence 

The symmetric tensor field in the present theory possesses six independent components. 
In addition, a vector field is present and its divergence is related to through equation 
(9). Hence it may be inferred that the present formulation would contain a spin-1 and 
spin-0 particle in addition to the spin-2 one. This conclusion is further borne out by a 
study of the quantised version of the above formalism. 

3. Quantisation 

Since in the Lagrangian we consider the variations of all the components to be 
independent of one another, the canonical quantisation procedure may be adopted for 
deriving the field commutation relations. The canonical momenta r,, and r:, are 
defined by 

The Hamiltonian density of the field is easily evaluated with the aid of equations (15), 
(61, (7) and (2): 
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As might have been expected, it is seen from the above expression that the Hamiltonian 
is not positive-definite, due to the presence of additional spin constituents, and hence 
quantisation will have to be carried out in an indefinite metric space. Taking into 
consideration the symmetry of the field, the canonical commutation relations may be 
written in the form 

[$*v(x), ~ Q A ( ( X ’ ) ~ X O = X ~  = ii(aeQSuA + s,*s,,)s(x -x’) ( 1 7 ~ )  

[$LY(~),  ~ ~ A ( X ‘ ) ] X , = X ~ = ~ ( ~ ~ Q ~ U A  + a , A a v p ) a ( x  (17b) 

[$pu(x), $~ph(X’) lxo=xb= [$&u(X), 4iA(x’)I=o (17c) 

[T&Y(X), ‘ i T p A ( X ’ ) ] x o = x b = [ r c l . ” ( X ) ,  riA(x’)l=o* ( 1 7 4  

These commutation relations are not automatically consistent with the constraint 
relation (2). By requiring that (17) be compatible with the constraint condition, we can 
re-express these commutation relations in terms of $,,,, i,,,, 4Lu, $ L u ,  xr and X L  with 
the aid of the definitions (15). The full set of commutation relations is presented in 
appendix 2. 

We shall now demonstrate the consistency of the quantisation procedure by showing 
that the Heisenberg equations 

where H = 5 X d3x and Xi s  given by (16), reproduce the equations (8) and (2) when the 
canonical commutations in appendix 2 are employed in (18). To verify this, consider 
first the equations for ~ $ 4  and 444 which by equation (18) are 

These two equations together are identical with the constraint condition (2). Consider 
now the equations for the components t,bii and r;j, 

+hij = (I/i)[$ij, HI = rij+&ai$4i+aj$4i)+- - 3B 8 i j r : k k  

+;, = (l/i)[r;, HI 

(20) 
B 

(21) = -i(airT4 +~j~~4)+~i~j$44+~k$ij-mZ$ij-B~ija2k$+m2(~ij$). 2 

Equation (20) is an identity corresponding to one of the relations in the definition of 
canonical momenta (15). Taking the time derivative of equation (20) and substituting 
from equation (21) and making use of the already derived equation (19) and the 
defining relation (1 5 a )  there emerges the following second-order equation: 

(0 - m2)Gij - ~ a ~ a ~ $  - ~ 8 ~ ~ 0 4  + Sijm2C$ = $(aixj +ajxi) (22) 

which is identical with the ij components of equation (8). The rest of the equations of 
motion are recovered in a similar fashion by considering the Heisenberg equations for 
r:4 and r44. 
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The general form of the commutator [$,,(x), $iA (x’)] for arbitrary separations can 
be inferred by invoking the principles of relativistic covariance and local commutativity 
and equations (14) and (2): 

[ $ F Y ( ~ ) )  $LA (x’)] 

= aC&S,,S,A +s,JL,) -awVap,, + m%,,apaA + s,,a,a,) 

+ b[m--2(6,,a,a, i -  a,, a,a,) - im-2(S,,aYah + s,, a,a, 
-$m-2(6,,a,a, + ~ , , a ~ t ) ,  +~~ ,a , aA +&,d,a,)]A(x -x ’ ;  m2) 

+ 6,,a,d, 4- Su~apap)]h(X - X I ;  0). (23) 

Apart from the constants a and b the coefficients of the various terms in equation (23) 
have been so chosen that the constraint relation (2) is consistent with the general 
commutator. If the coefficients a and b are assigned the values a = i, b = -i the equal 
time commutation relations (appendix 2) can be recovered from equation (24) for the 
choice of the parameter 43 = 5.  In a similar manner we can write down the following 
general commutation relations involving x, : 

[ $ I L Y ( ~ ) ,  x:(x’)I= --i(S,,& +&,a, -S,d,)A(x -x’; 0 )  

[x,(x), x,(x’)l = -i(SFv -a,a,)A(x -x’; 0). 

(24) 

(25) 

These commutation relations will be consistent with the equal time commutators 

The Feynman propagator of the field is evaluated in the customary way. In this case 
given in appendix 2 provided the parameter A is set equal to zero. 

the normal-dependent terms drop off and the propagator is rigorously given by 
AF , u . p A ( ~  -x’) 

= ( o ~ ~ $ ~ c u ( ~ ) $ ~ A ~ x ’ ~ ~ o )  

= &S,,S,~ +s,,s,,) - s,,s,, + m-2(S,va,a, + s,,a,a,) 
+tm-2(S,,a,a, +S,,,a,a, +S,a,a, + S , , ~ , ~ , ) ] A ~ ( X  - x ’ ;  m2> 

-[m-2(ti,,a,aA +sphawau) -4m-2(s,,a,aA + s,,a,a, 
+ &,a, 8, + a,a,)]Ap(X - X ’ ; 0). (26) 

This may be rewritten in the form 
Ap,u,pA(~ -x’) = A$?ky.,A(~ -x’)-$(S,, -m-2away)(Sph -m-2a,aA)A~(x -x’;  m2) 

- [m-2(S,,apah + a,, a, a,) - tm-2(S,,ayaA 

+s,Aauap+&pa,aA +&~a,ap)lA~(X - x ’ ;  0)  (27) 
where AF) is the usual massive spin-2 propagator 

~J721,,,~(~ = [ ~ ( S , , S , ,  +s, ,s ,~) -SS,J, ,  
+fm-2(s,,a,a, + ~ , , a , a , ) - ~ m - 2 ~ ~ , , a , a A  +S,,a,,a, 

$.&pa,a, + S , ~ d , ~ ~ ) $ . ~ m - ~ a , a . a , a ~ ] A ~ ( X  -X’; m2). (28) 
The other propagators are given by 

( ~ I T $ , , ( x ) x . ~ x ’ ) ~ o ) =  -(s,,aV +s,a, -S,dp)A~(x -x‘; 0 )  (29) 

(0)Tx,(x)~~(x’)IO) = -(S,” -a,a,)A& - ~ ‘ ) - - i i s , ~ S ~ ~ S ( ~ ) ( x  -x’). (30) 
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Since x, ( x )  represents a negative-metric-carrying ghost particle which will not be 
present in the physical states, the above propagators will not be of further use and the 
non-covariant form of equation (30) is of no consequence. 

4. Electromagnetic interaction 

We shall now consider the interaction of the above-described symmetric tensor field 
with an external electromagnetic field. The questions of constraint loss and the 
Johnson-Sudarshan type of inconsistency on quantisation do not arise at all in the 
present framework. We now show that the present formulation is free of the trouble of 
acausality also. 

Introducing minimal coupling into the Lagrangian (6) by the replacement 
a, + D ,  = a, - ieA, the equations of motion resulting from the variations of $:, and x’y 
become 

It may be noted here that, as contrasted with the situation of the spin-? theory 
developed in Babu Joseph and Sabir (1977) where the constraint condition was free of 
derivatives and was unaffected by the interaction, in the present case, the requirement 
of gauge invariance leads to a minimal modification of the constraint (2). Substituting 
(32) in (31), with the aid of the relation 

[D,, DUI = ieFFU, (33) 
where F,, = a,A, -a,&, we find 

(0’- m2M,, -AD,D,+ - S,BD’$ + S,,m’C$ -ie(FA,$AY +F~,$~,) 

= %D,xy + DuxLL). (34) 

Contracting the indices p and Y, taking the divergence of equation (34), and then 
combining the two resulting relations, it is found that the equation obeyed by xu is 
D2xy = -AD’D,$ - B D D 2 $  + m2CD,$ - ie(F,ADA$,y - FA,,D,$Au). (35) 
This relation may be used for eliminating from equation (31), and we obtain the 
resulting equation as 

D 2 ( D 2  -- m2)$,, + BD,D,,D’$ - S,J(D2)’$ +lower derivative terms = 0. (36) 
We have not shown the lower derivative terms explicitly because these are not 
important in determining the nature of field propagation, which depends solely on the 
highest-order derivatives. The characteristic determinant of the system of equations 
(36) is evaluated with the result 

D ( n )  = (1 -B)3(n4)10. (37) 
Since B # 1 in the present theory (the choice B = a  having been made for consistent 
quantisation), the characteristic determinant will not vanish identically and, setting 
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D ( n )  = 0, it is evident that the propagation of the interacting field is light-like and hence 
causal. 

5. Massless limit 

Another merit of the present formulation is that the limit m + 0 can be taken smoothly 
without encountering any difficulty, The equation of motion in this case is 

OICI~, -Aa,a,+ -~,,BO+ = &,xu +aUx,) (38) 
but the constraint remains the same as equation (2). The formalism can be developed in 
a way exactly analogous to the massive case. It suffices to note that in the massless case 
equation (38) and equation (2) are invariant under the gauge transformation 

+WY (XI + +,U (XI + 3[a,& ( x )  + a d ,  ( X I 1  (39) 

x, (x) + XI* ( x )  (40) 

OS,(X) = 0 (41) 

a,t, (XI = 0. (42) 

provided the gauge functions t, obey the conditions 

This gauge freedom serves to reduce the number of degrees of freedom in the massless 
case. 

The Feynman propagator of the massless field is obtained by letting m + 0 in the 
expression (26): 

DF & u , p A ( x  - x ’ )  = &S,pSvA + ~ , A ~ v p ) - S , v S p A ]  

X AF(X - x ’ ;  0) + (S,,a,aA + S,*d,a, -$(S,,a,aA 

+ 6 , A a v a p  + S , p d @ d A  + S , A a , a p ) E ( x - x ‘ )  (43) 
where 

a 2 E(x  - x ‘ )  = lim ~ A F ( x - x ’ ;  m ). 
m2+0 am 

The expansion 
2 2 8  

am 
A&-x’; m )=AF(x-x ’ ;  O)+m ~ A F ( x - x ’ ;  m2)1,z,o+. . . (44) 

was used in deriving equation (43). In the expression (43) the term [;(S,,S,, + c?,~S,) - 
S,&]AF(x - x ’ ;  0 )  corresponds to the actual propagator of the massless spin-2 field 
while the other term represents the ghost particles. One noteworthy aspect of the 
present approach is that the true massless spin-2 propagator is obtained simply by 
taking the limit m + 0 in equation (26) whereas this does not happen in the conventional 
formulations even if it is assumed that the derivative terms can be left out. 

6. Conclusion 

The Lagrange multiplier formalism developed above for the spin-2 field has the 
attractive feature that pathologies like constraint loss, inconsistency in quantisation and 
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acausal propagation do not make their appearance in this approach. However, this is 
achieved at the cost of introducing an indefinite metric theory and this brings its own 
share of troubles. In the spin-? case (Babu Joseph and Sabir 1977) with minimal 
electromagnetic interaction introduced, it was found that the ghost particle also gets 
coupled to the electromagnetic field and this leads to the non-unitarity of the S-matrix. 
A procedure was outlined there for the removal of non-unitarity by introducing a 
fictitious particle and an additional vertex. As is evident from an inspection of equation 
(35), the non-unitarity problem is bound to arise in the present example as well when 
the S-matrix is constructed. But, on account of the difficulty of isolating the negative- 
metric carrying components, the method followed in the spin-2 case for the restoration 
of unitarity is not easily carried out in this instance. We hope, however, that the 
procedure of introducing additional vertices and fictitious particles would resolve the 
difficulty in the present case as well. 

The possibility of discussing the massless limit in a straightforward way is another 
advantage of the present approach and this may be used as a springboard for the 
formulation of a new gravitational theory involving tensor and additional ghost 
particles. This problem is currently under investigation. 
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Appendix 1 

A Lagrange multiplier formalism can be developed by incorporating both sets of 
constraints (2) and (3). We take the Lagrangian in this case to be 

z = z o + ~ : a , + , v + ~ y a , + ~ y  +T'++T++ (Al . l )  

where 5 is a scalar multiplier field. The equation of motion is 

(U - m2M,, = &,xu + avx,) - ~,,t. (Al.2) 

Taking into account the constraints (2) and (3), it follows from (A1.2) that 

(A1.3) 

(A1.4) 

Equation (A1.3) expresses the scalar multiplier field 6 in terms of a,x,. By combining 
equations (A1.3) and (A1.4) the equation obeyed by x, can be derived: 

(o)2xv = 0. 

From equations (A1.5) and (A1.2) it follows further that 

(A1.5) 

(u)~(o - m2)+,, = o (A1.6) 

which is the same as equation (14). 
The quantisation procedure can be developed along the lines in 0 3. However, a 

difficulty that appears in this case is that the Heisenberg equations reproduce the field 
equation (A1.2) only if a,x, = 0. Another obstacle is that a general commutator 
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satisfying the constraints (A1 -2) and (A1.3) and other requirements, while reproducing 
the equal time anticommutation relations, cannot be written down. It is on account of 
these complexities that a single multiplier formalism has been adopted in the text. 

Appendix 2 

The equal time commutation relations involving the components $@,,, $*,,, $*,,, 

K Babu Joseph and M Sabir 

t ‘ t  x* 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

(A2.12) 

(A2.13) 

(A2.14) 

(A2.15) 

(A2.16) 

(A2.17) 

(A2.18) 

(A2.19) 

(A2.20) 

(A2.21) 

(A2.22) 

(A2.23) 

(A2.24) 
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